Author: Madsen, A.
Paper Title Page
TUCPR02 Data Exploration and Analysis with Jupyter Notebooks 799
  • H. Fangohr, M. Beg, M. Bergemann, V. Bondar, S. Brockhauser, C. Carinan, R. Costa, F. Dall’Antonia, C. Danilevski, J.C. E, W. Ehsan, S.G. Esenov, R. Fabbri, S. Fangohr, G. Flucke, C. Fortmann-Grote, D. Fulla Marsa, G. Giovanetti, D. Goeries, S. Hauf, D.G. Hickin, T. Jarosiewicz, E. Kamil, M. Karnevskiy, Y. Kirienko, A. Klimovskaia, T.A. Kluyver, M. Kuster, L. Le Guyader, A. Madsen, L.G. Maia, D. Mamchyk, L. Mercadier, T. Michelat, J. Möller, I. Mohacsi, A. Parenti, M. Reiser, R. Rosca, D.B. Rück, T. Rüter, H. Santos, R. Schaffer, A. Scherz, M. Scholz, A. Silenzi, M. Spirzewski, J. Sztuk, J. Szuba, S. Trojanowski, K. Wrona, A.A. Yaroslavtsev, J. Zhu
    EuXFEL, Schenefeld, Germany
  • S. Brockhauser
    BRC, Szeged, Hungary
  • A. Campbell, A. Götz, J. Kieffer
    ESRF, Grenoble, France
  • H. Fangohr
    University of Southampton, Southampton, United Kingdom
  • E. Fernandez-del-Castillo, G. Sipos
    The EGI Foundation, Amsterdam, The Netherlands
  • J. Hall, E. Pellegrini, J.F. Perrin
    ILL, Grenoble, France
  • T. Holm Rod, J.R. Selknaes, J.W. Taylor
    ESS, Copenhagen, Denmark
  • J. Reppin, F. Schlünzen, M. Schuh
    DESY, Hamburg, Germany
  Funding: With support from EU’s H{2}020 grants 823852 (PaNOSC) and #676541 (OpenDreamKit), the Gordon and Betty Moore Foundation GBMF #4856, the EPSRC’s CDT (EP/L015382/1) and program grant (EP/N032128/1).
Jupyter notebooks are executable documents that are displayed in a web browser. The notebook elements consist of human-authored contextual elements and computer code, and computer-generated output from executing the computer code. Such outputs can include tables and plots. The notebook elements can be executed interactively, and the whole notebook can be saved, re-loaded and re-executed, or converted to read-only formats such as HTML, LaTeX and PDF. Exploiting these characteristics, Jupyter notebooks can be used to improve the effectiveness of computational and data exploration, documentation, communication, reproducibility and re-usability of scientific research results. They also serve as building blocks of remote data access and analysis as is required for facilities hosting large data sets and initiatives such as the European Open Science Cloud (EOSC). In this contribution we report from our experience of using Jupyter notebooks for data analysis at research facilities, and outline opportunities and future plans.
slides icon Slides TUCPR02 [15.943 MB]  
DOI • reference for this paper ※  
About • paper received ※ 24 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)