Author: Romera, I.
Paper Title Page
WEPHA131 Evaluation of an SFP Based Test Loop for a Future Upgrade of the Optical Transmission for CERN’s Beam Interlock System 1399
  • R. Secondo, M.A. Galilée, J.C. Garnier, C. Martin, I. Romera, A.P. Siemko, J.A. Uythoven
    CERN, Geneva, Switzerland
  The Beam Interlock System (BIS) is the backbone of CERN’s machine protection system. The BIS is responsible for relaying the so-called Beam Permit signal, initiating in case of need the controlled removal of the beam by the LHC Beam Dumping System. The Beam Permit is encoded as a specific frequency traveling over a more than 30 km long network of optical fibers all around the LHC ring. The progressive degradation of the optical fibers and the aging of electronics affect the decoding of the Beam Permit, thus potentially resulting in an undesired beam dump event and by this reduce the machine availability. Commercial off-the-shelf SFP transceivers were studied with the aim to improve the performance of the optical transmission of the Beam Permit Network. This paper describes the tests carried out in the LHC accelerator to evaluate the selected SFP transceivers and it reports the results of the test loop reaction time measurements during operation. The use of SFPs to optically transmit safety critical signals is being considered as an interesting option not only for the planned major upgrade of the BIS for the HL-LHC era but also for other protection systems.  
poster icon Poster WEPHA131 [0.826 MB]  
DOI • reference for this paper ※  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)