Device Control and Integrating Diverse Systems
Paper Title Page
MOMPL008 New Neutron Sensitive Beam Loss Monitor (nBLM) 137
MOPHA089   use link to see paper's listing under its alternate paper code  
 
  • Y. Mariette, Q. Bertrand, F. Gougnaud, T.J. Joannem, V. Nadot, T. Papaevangelou, L. Segui
    CEA-IRFU, Gif-sur-Yvette, France
  • F.S. Alves, I. Dolenc Kittelmann
    ESS, Lund, Sweden
  • W. Cichalewski, G.W. Jabłoński, W. Jałmużna, R. Kiełbik
    TUL-DMCS, Łódź, Poland
 
  The beam loss detection is of the utmost importance for accelerator safety. At CEA, we are closely collaborating with ESS and DMCS on development of ESS nBLM. The system is based on Micromegas* gaseous detector sensitives to fast neutrons produced when beam particles hit the accelerator materials. This detector has powerful features: reliable neutron detection and fast time response. The nBLM control system provides slow monitoring, fast security based on neutron counting and post mortem data. It is fully handled by EPICS, which drives 3 different subsystems: a Siemens PLC regulates the gas line, a CAEN crate controls low and high voltages, and a MTCA system based on IOxOS boards is in charge of the fast data processing for 16 detectors. The detector signal is digitized by the 250 Ms/s ADC, which is further processed by the firmware developed by DMCS and finally retrieved and sent to EPICS network. For other accelerator projects, we are designing nBLM system close to ESS nBLM one. In order to be able to sustain the full control system, we are developing the firmware and the driver. This paper summarizes CEA’s work on the nBLM control system for the ESS and other accelerators.
*Micromegas: http://irfu.cea.fr/en/Phocea/Viedeslabos/Ast/asttechnique.php?idast=2307
 
poster icon Poster MOMPL008 [2.475 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOMPL008  
About • paper received ※ 26 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA030 An Upgrade of the HARPS-N Spectrograph Autoguider at TNG 258
 
  • R. Cirami, I. Coretti, P. Di Marcantonio
    INAF-OAT, Trieste, Italy
  • F. Alesina, N. Buchschacher, F. Pepe
    Université de Genève, Observatoire Astronomique, Versoix, Switzerland
 
  HARPS-N is a high-precision radial-velocity spectrograph installed on the INAF TNG in the island of La Palma, Canary Islands. The HARPS-N project is a collaboration among several institutes lead by the Astronomical Observatory of the University of Geneva. The HARPS-N control software is composed by the Sequencer, which coordinates the scientific observations and by a series of modules implemented in LabVIEW for the control of the instrument front end, calibration unit and autoguider. The autoguider is the subsystem in charge of maintaining the target centered on the spectrograph fiber. It acquires target images at high frequency with a technical CDD and with the help of dedicated algorithms keeps the target centered on the fiber through a piezo tip-tilt stage. Exploiting the expertise acquired with the autoguiding system of the ESPRESSO spectrograph installed at the ESO VLT, a collaboration has been setup between the HARPS-N Consortium and the INAF - Astronomical Observatory of Trieste for the design and implementation of a new autoguider for HARPS-N. This paper describes the design, implementation and installation phases of the new autoguider system.  
poster icon Poster MOPHA030 [1.382 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA030  
About • paper received ※ 29 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA032 Big Data Architectures for Logging and Monitoring Large Scale Telescope Arrays 268
 
  • A. Costa, U. Becciani, P. Bruno, A.S. Calanducci, A. Grillo, S. Riggi, E. Sciacca, F. Vitello
    INAF-OACT, Catania, Italy
  • V. Conforti, F. Gianotti
    INAF, Bologna, Italy
  • J. Schwarz
    INAF-Osservatorio Astronomico di Brera, Merate, Italy
  • G. Tosti
    Università degli di Perugia, Perugia, Italy
 
  Funding: This work was partially supported by the ASTRI "Flagship Project" financed by the Italian Ministry of Education, University, and Research and led by the Italian National Institute of Astrophysics.
Large volumes of technical and logging data result from the operation of large scale astrophysical infrastructures. In the last few years several "Big Data" technologies have been developed to deal with a huge amount of data, e.g. in the Internet of Things (IoT) framework. We are comparing different stacks of Big Data/IoT architectures including high performance distributed messaging systems, time series databases, streaming systems, interactive data visualization. The main aim is to classify these technologies based on a set of use cases typically related to the data produced in the astronomical environment, with the objective to have a system that can be updated, maintained and customized with a minimal programming effort. We present the preliminary results obtained, using different Big Data stack solution to manage some use cases related to quasi real-time collection, processing and storage of the technical data, logging and technical alert produced by the array of nine ASTRI telescopes that are under development by INAF as a pathfinder array for the Cherenkov astronomy in the TeV energy range.
*ASTRI Project: http://www.brera.inaf.it/~astri/wordpress/
**CTA Project: https://www.cta-observatory.org/
 
poster icon Poster MOPHA032 [1.327 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA032  
About • paper received ※ 02 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA072 Automation in NSRC SOLARIS With Python and Tango Controls 382
 
  • W.T. Kitka, M.K. Falowski, A.M. Marendziak, N. Olszowska, M. Zając
    NSRC SOLARIS, Kraków, Poland
 
  NSRC SOLARIS is a 1.5 GeV third generation light source constructed at Jagiellonian University in Kraków, Poland. The machine was commissioned in April 2016 and operates in decay mode. Two beamlines PEEM/XAS and UARPES were commissioned in 2018 and they have opened for conducting research in fall 2018. Two more beamlines (PHELIX and XMCD) are installed now and will be commissioned soon. Due to small size of the team and many concurrent tasks, automation is very important. Automating many tasks in a quick and effective way is possible thanks to the control system based on TANGO Controls and Python programming language. With facadevice library the necessary values can be easily calculated in real-time. Beam position correction with PID controller at PEEM/XAS and UARPES beamlines, alarm handling in SOLARIS Heating Unit Controller and real-time calculation of various vacuum parameters are shown as examples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA072  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA075 EPICS Support Module for Efficient UDP Communication With FPGAs 388
 
  • M.G. Konrad, E. Bernal, M.A. Davis
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The driver linac of the Facility for Rare Isotope Beams (FRIB) contains 332 cavities which are controlled by individual FPGA-based low-level RF controllers. Due to limited hardware resources the EPICS IOCs cannot be embedded in the low-level RF controllers but are running on virtual machines communicating with the devices over Ethernet. An EPICS support module communicating with the devices over UDP has been developed based on the Asyn library. It supports efficient read and write access for both scalar and array data as well as support for triggering actions on the device. Device-related parameters like register addresses and data types are configurable in the EPICS record database making the support module independent of the hardware and the application. This also allows engineers to keep up with evolving firmware without recompiling the support library. The implementation of the support module leverages modern C++ features and relies on timers for periodic communication, timeouts, and detection of communication problems. The latter allows the communication code to be tested separately from the timers keeping the run time of the unit tests short.
 
poster icon Poster MOPHA075 [4.216 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA075  
About • paper received ※ 03 October 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA090 Design of Vessel and Beamline Vacuum and Gas Control System for Proton Radiography 417
 
  • P.S. Marroquin, J.D. Bernardin, J.G. Gioia, D.A. Hathcoat, A. Llobet, H.J. Sandin, W. Winton
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Supported by the US Department of Energy, Los Alamos National Laboratory. Managed by Triad National Security, LLC, for the DOE National Nuclear Security Administration (Contract 89233218CNA000001).
A new capability for conducting explosively-driven dynamic physics experiments at the Proton Radiographic (pRad) facility at Los Alamos National Laboratory (LANL) is in development. The pRad facility, an experimental area of the Los Alamos Neutron Science Center (LANSCE), performs multi frame proton radiography of materials subjected to an explosive process. Under design is a new beamline with confinement and containment vessels and required supporting systems and components. Five distinct vacuum sections have been identified, each equipped with complete vacuum pumping assemblies. Inert gas systems are included for backfill and pressurization and supporting piping integrates the subsystems for gas distribution and venting. This paper will discuss the design of the independent vacuum control subsystems, the integrated vacuum and gas control system and full incorporation into the Experimental Physics and Industrial Control System (EPICS) based LANSCE Control Systems and Networks.
LA-UR-19-23843
 
poster icon Poster MOPHA090 [2.167 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA090  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA091 ESS MEBT Control System Integration 421
 
  • I. Mazkiaran, I. Bustinduy, G. Harper, A. Rodríguez Páramo, C. de la Cruz
    ESS Bilbao, Zamudio, Spain
  • J.P.S. Martins
    ESS, Lund, Sweden
 
  The high power linac of European Spallation Source, ESS (Lund, Sweden), accelerates 62.5 mA of protons up to 2 GeV in a sequence of normal conducting and superconducting accelerating structures. The Medium Energy Beam Transport (MEBT) line has been designed tested and mounted at ESS Bilbao premises to guarantee tight requirements are met. The main purpose of this 3.62 MeV MEBT is to match the RFQ output beam characteristics to the DTL input requirements both transversally using quadrupoles, and longitudinally RF buncher cavities. Additionally, the beam is also cleaned by efficient use of halo scrapers and pulse shape by means of a fast chopper. Besides, beam characterization (beam current, pulse shape, size, emittance) is performed using a comprehensive set of diagnostics. Therefore, firstly, control integration of magnets and steerers power supplies, for quadrupoles, as well as synchronism, triggering, linked to high voltage pulsers within the chopper control, is part of the commitment for the present work. Secondly, the control developments of beam instruments such as Faraday Cup and Emittance Meter Unit will be described. All the integrations are based on ESS EPICS environment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA091  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA096 ESS Drift Tube Linac Control System Architecture and Concept of Operations 436
 
  • M. Montis, L. Antoniazzi, A. Baldo, M.G. Giacchini
    INFN/LNL, Legnaro (PD), Italy
  • T. Fay
    ESS, Lund, Sweden
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS)* is designed to operate at 352.2 MHz with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. According to the Project standards, the entire control system is based on the EPICS framework**. This paper presents the control system architecture designed for the DTL apparatus by INFN-LNL***, emphasizing in particular the technological solutions adopted and the high level control orchestration, used to standardize the software under logic design, implementation and maintenance points of view.
*https://europeanspallationsource.se/
**https://epics-controls.org/
***https://web.infn.it/epics/
 
poster icon Poster MOPHA096 [2.076 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA096  
About • paper received ※ 22 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA097 EPICS Based Control System for SPES Tape Station for Beam Characterization: Motion System and Controls 440
 
  • M. Montis, M.G. Giacchini, T. Marchi
    INFN/LNL, Legnaro (PD), Italy
  • J.K. Abraham
    iThemba LABS, Somerset West, South Africa
  • B. Genolini, L. Vatrinet, D. Verney
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  The SPES* Tape Station (STS) for Radioactive Ion Beams (RIBs) characterization is under construction at LNL. This tool will be used to measure the actual composition of the radioactive ion beams extracted from the SPES-β ion source and to optimize the source’s parameters. STS will provide beam diagnostic information by determining the beam composition and intensity. At the same time, it will be able to measure the target release curves needed for the source’s characterization and development. The core part of the system, the related motor and controls are being designed and constructed in synergy with IPN Orsay (France), iThemba Laboratories (South Africa) and the Gamma collaboration (INFN-CSN3). In particular, the mechanical part is based on the existing BEDO** tape system operated in ALTO while the control system for motion is an EPICS*** base application under implementation by iThemba and INFN, result of a upgrade operation required to substitute obsoleted hardware and update logic and algorithm.
*https://web.infn.it/spes/
**Etil et al. PRC 91, 064317 (2015)
***https://epics-controls.org/
 
poster icon Poster MOPHA097 [2.424 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA097  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA103 The PLC Control System for the RF Upgrade of the Super Proton Synchrotron 458
 
  • J.C. Oliveira, L. Arnaudon, A. Diaz Fontalva
    CERN, Geneva, Switzerland
 
  During the CERN Long Shutdown 2 (LS2), the 200 MHz main acceleration system of the Super Proton Synchrotron (SPS) is being upgraded. Two cavities will be added to reach a total of six. Each new cavity will be powered by Solid State Power Amplifiers (SSPA) grouped into 16 "towers" of 80 modules each, in total 2560 modules. This paper describes the newly developed control system which uses a master PLC for control and interlock of each cavity and the slave PLC controllers for each of the solid state amplifier towers. The system topology and design choices are discussed. Control and interlocking of all subsystems necessary for the operation of an RF cavity are detailed, and the interaction between the master and slave PLC controllers is outlined. We discuss some preliminary results and performance of the test installation.  
poster icon Poster MOPHA103 [3.012 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA103  
About • paper received ※ 27 September 2019       paper accepted ※ 02 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA105 Adaptation of CERN Power Converter Controls for Integration into Other Laboratories using EPICS and TANGO 462
 
  • S.T. Page, J. Afonso, C. Ghabrous Larrea, J. Herttuainen, Q. King, B. Todd
    CERN, Geneva, Switzerland
 
  Modern power converters (power supplies) at CERN use proprietary controls hardware, which is integrated into the wider control system by software device servers developed specifically for the CERN environment, built using CERN libraries and communication protocols. There is a growing need to allow other HEP laboratories to make use of power converters that were originally developed for CERN and, consequently, a desire to allow for their efficient integration into control systems used at those laboratories, which are generally based upon either of the EPICS and Tango frameworks. This paper gives an overview of power converter equipment and software currently being provided to other laboratories through CERN’s Knowledge and Technology Transfer program and describes differences identified between CERN’s control system model and that of EPICS, which needed to be accounted for. A reference EPICS implementation provided by CERN to other laboratories to facilitate integration of the CERN power converter controls is detailed and the prospects for the development of a Tango equivalent in the future are also covered.  
poster icon Poster MOPHA105 [2.417 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA105  
About • paper received ※ 27 September 2019       paper accepted ※ 11 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA106 FGC3.2: A New Generation of Embedded Controls Computer for Power Converters at CERN 468
 
  • S.T. Page, C. Ghabrous Larrea, Q. King, B. Todd, S. Uznanski, D.J. Zielinski
    CERN, Geneva, Switzerland
 
  Modern power converters (power supplies) at CERN are controlled by devices known as Function Generator/Controllers (FGCs), which are embedded computer systems providing function generation, current and field regulation, and state control. FGCs were originally conceived for the LHC in the early 2000s, though later generations are now increasingly being deployed in the accelerators in the LHC Injector Chain (Linac4, Booster, Proton Synchrotron and SPS) to replace obsolete equipment. A new generation of FGC known as the FGC3.2 is currently in development, which will provide for the evolving needs of the CERN accelerator complex and additionally be supplied to other HEP laboratories through CERN’s Knowledge and Technology Transfer program. This paper describes the evolution of FGCs, summarizes tests performed to evaluate candidate components for the FGC3.2 and details the final hardware and software architectures which were chosen. The new controller will make use of a multi-core ARM-based system-on-chip (SoC) running an embedded Linux operating system in contrast to earlier generations which combined a microcontroller and DSP with software running on ’bare metal’.  
poster icon Poster MOPHA106 [2.986 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA106  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA113 Linux-based PXIe System for the Real-Time Control of New Painting Bumper at CERN 483
 
  • M.P. Pimentel, E. Carlier, C. Chanavat, T. Gharsa, G. Gräwer, N. Magnin, N. Voumard
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade Project, the new connection from Linac4, injecting a 160 MeV H beam into the Proton Synchrotron Booster (PSB) requires a set of four slow kicker magnets (KSW) per PSB ring to move the beam on a stripping foil, remove electrons and perform phase space painting. A new multiple-linear waveform generator based on a Marx topology powers each KSW, allowing adjustment of the current discharge shape with high flexibility for the different beam users. To control these complex power generators, National Instruments (NI) PXIe crates fitted with a set of modules (A/D, D/A, FPGA, PROFINET) are used. Initially, control software developed with LabVIEW has validated the test bench hardware. A full software re-engineering, accessing the hardware using Linux drivers, C APIs and the C++ framework FESA3 under Linux CentOS7 was achieved for operational deployment. This paper describes the hardware used, and the integration of NI PXIe systems into CERN controls environment, as well as the software architecture to access the hardware and provide PSB operators and kicker experts with the required control and supervision.  
poster icon Poster MOPHA113 [1.081 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA113  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA115 Code Generation Tools and Editor for Memory Maps 493
 
  • P. Plutecki, B. Bielawski, A.C. Butterworth
    CERN, Geneva, Switzerland
 
  Cheburashka, a toolset created in the Radio Frequency Group at CERN, has become an essential part of our hardware and software developments. Due to changing requirements, this toolset has been recently rewritten in C++ and Python. A hardware developer, using the graphical editor, defines a memory map, which is subsequently used to ensure consistency between software and hardware. The memory map file is an input for a variety of tools used by the hardware engineers, such as VHDL code generators. In addition to aiding the firmware development, our tools generate C++ wrapper libraries. The wrapper provides a simple interface on top of a Linux device driver to read and write registers by exposing memory map nodes in a hierarchical way, performing all low-level bit manipulations and checks internally. To interact with the hardware, a software that runs on a front-end computer is needed. Cheburashka allows us to generate FESA (Front-End Software Architecture) classes with parts of the operational interface already present. This paper describes the evolution of the graphical editor and the Python tools used for C++ code generation, along with a description of their main features.  
poster icon Poster MOPHA115 [0.708 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA115  
About • paper received ※ 26 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA132 Control System Integration of MAX IV Insertion Devices 525
 
  • J. Lidón-Simon, N.S. Al-Habib, H.Y. Al-Sallami, A. Dupre, V.H. Hardion, M. Lindberg, P. Sjöblom, A. Thiel, G. Todorescu
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  During the last 2.5 years, MAX IV have installed and commissioned in total 15 insertion devices out of which 6 are new in vacuum undulators, 1 in vacuum wiggler, and 7 in-house developed and manufactured Apple II elliptical polarized undulators. From the old lab, MAXLAB, 1 PU is also reused. Looking forward, 3 additional insertion devices will be installed shortly. As MAX IV only has one Control and IT group, the same concept of machine and beamline installation have been applied also to the insertion devices, i.e. Sardana, Tango, PLC, and IcePAP integration. This has made a seamless integration possible to the rest of the facility in terms of user interfaces, alarm handling, archiving of status, and also future maintenance support.  
poster icon Poster MOPHA132 [4.755 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA132  
About • paper received ※ 30 September 2019       paper accepted ※ 11 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA136 Integration of Optical Beam Loss Monitor for CLARA 544
 
  • W. Smith
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A.D. Brynes, F. Jackson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.D. Brynes, F. Jackson, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
 
  The detection of beam loss events in accelerators is an important task for machine and personal protection, and for optimization of beam trajectory. An optical beam loss monitor (oBLM) being developed by the Cockcroft Institute at Daresbury Laboratory required integration with the rest of the controls and timing system of the site’s electron accelerator, CLARA (Compact Linear Accelerator for Research and Applications). [1] This paper presents the design and implementation of an inexpensive solution using a Domino Ring Sampling device from PSI. Signals from the oBLM are acquired and can be processed to resolve beam loss events to a resolution of 0.2 m.  
poster icon Poster MOPHA136 [0.817 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA136  
About • paper received ※ 30 September 2019       paper accepted ※ 11 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA143 Motion Control Development of the Material Handling System for Industrial Linac Project at SLRI 566
 
  • R. Rujanakraikarn, P. Koonpong, S. Tesprasitte
    SLRI, Nakhon Ratchasima, Thailand
 
  The prototype of industrial linac for food irradiation application using x-ray has been under development at Synchrotron Light Research Institute (SLRI). Several subsystems of the machine are carefully designed for proper operation. Material handling system with its motion control and its relationship with a beam scanning system is explained in this paper. Hardware selection and software development together with a networked control system is described. This system is being developed and tested with the object detection system to monitor and control the position and velocity of materials on a conveyor belt.  
poster icon Poster MOPHA143 [1.077 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA143  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA147 Integrating the First SKA MPI Dish Into the MeerKAT Array 575
 
  • S.N. Twum, A.F. Joubert, K. Madisa
    SARAO, Cape Town, South Africa
 
  Funding: National Research Foundation
The 64-antenna MeerKAT interferometric radio telescope is a precursor to the SKA which will host hundreds of receptor dishes with a collecting area of 1 sq km. During the pre-construction phase of the SKA1 MID, the SKA DSH Consortium plans to build, integrate and qualify an SKA1 MID DSH Qualification Model (SDQM) against MeerKAT. Before the system level qualification testing can start on the SDQM, the qualified Dish sub-elements have to be integrated onto the SDQM and set to work. The SKA MPI DISH, a prototype SKA dish funded by the Max Planck Institute, will be used for early verification of the hardware and the control system. This prototype dish uses the TANGO framework for monitoring and control while MeerKAT uses the Karoo Array Telescope Control Protocol (KATCP). To aid the integration of the SKA MPI DSH, the MeerKAT Control and Monitoring (CAM) subsystem has been upgraded by incorporating a translation layer and a specialized SKA antenna proxy that will enable CAM to monitor and command the SKA dish as if it were a MeerKAT antenna.
 
poster icon Poster MOPHA147 [0.915 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA147  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA152 Use of Multi-Network Fieldbus for Integration of Low-Level Intelligent Controller Within Control Architecture of Fast Pulsed System at CERN 589
 
  • N. Voumard, C. Boucly, M.P. Pimentel, L. Strobino, P. Van Trappen
    CERN, Geneva, Switzerland
 
  Fieldbuses and Industrial Ethernet networks are extensively used for the control of fast-pulsed magnets at CERN. With the ongoing trend to develop increasingly more complex low-level intelligent controllers near to the actuators and sensors, the flexibility to integrate these within different control architectures grows in importance. In order to reduce development efforts and keep the fieldbus choice open, a multi-network field-bus technology has been selected for the network interfacing part of the controllers. Such an approach has been successfully implemented for several projects such as the development of high voltage capacitor chargers/dischargers, the surveillance of floating solid-state switch and the monitoring of a power triggering system that, today, are interfaced either to PROFIBUS-DP or PROFINET networks. The integration of various fieldbus interfaces within the controller and the required embedded software/gateware to manage to network communication are presented. The gain in flexibility, modularity and openness obtained through this approach is also reviewed.  
poster icon Poster MOPHA152 [0.587 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA152  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA156 The Linux Device Driver Framework for High-Throughput Lossless Data Streaming Applications 602
 
  • K. Vodopivec, J.E. Breeding
    ORNL, Oak Ridge, Tennessee, USA
  • J.W. Sinclair
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by the U.S. Department of Energy under contract DE-AC0500OR22725.
Many applications in experimental physics facilities require custom hardware solutions to control process parameters or to acquire data at high rates with high integrity. These hardware solutions typically require custom software implementations. The neutron scattering detectors at the Spallation Neutron Source at ORNL* implement custom protocols over optical fiber connected to a PCI express based read-out board. A dedicated kernel device driver provides an interface to the software application and must be able to sustain data bursts from a pulsed source while acquiring data for long periods of time. The same optical channel is also used as low-latency communication link to detector electronics for configuration and real time fault detection. This paper presents a Linux device driver design, implementation challenges in a low-latency high-throughput setup, real use case benchmarks and importance of clean application programming interface for seamless integration in control systems. This software implementation was developed as a generic framework and has been extended beyond neutron data acquisition. It is suitable to diverse applications where it allows for rapid FPGA development.
*Oak Ridge National Laboratory
 
poster icon Poster MOPHA156 [4.163 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA156  
About • paper received ※ 02 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA164 Wire Scanner for High Intensity Beam Profile Diagnostics 622
 
  • J. Yan, J. Gubeli, K. Jordan
    JLab, Newport News, Virginia, USA
  • B. Bailey
    University of Tennessee, Knoxville, USA
 
  A control and data acquisition system of a high speed wire scanner is developed for high intensity beam profile diagnostics. The control system of the wire scanner includes two IOCs, a Soft IOC and a VME IOC. The Soft IOC connects with an Aerotech Ensemble motor drive through EPCIS motor record and controls the movement of the wire scanner. An Electrical Input card samples the real-time position of the wire through an incremental encoder, and generates a pulse to synchronize a VME ADC data acquisition card, which digitizes and samples the beam-induced signal after pre-amplification. A VME Relay Output card is installed to control the Brake Solenoid and Actuator Solenoid. All the VME I/O cards are installed on one VME crate and controlled by the VME IOC. The system configuration and software of the wire scanner are under development.
Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
 
poster icon Poster MOPHA164 [0.973 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA164  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA165 An Embedded IOC for 100 MeV Cyclotron RF Control 625
 
  • Z.G. Yin, X.L. Fu, X.T. Lu, T.J. Zhang
    CIAE, Beijing, People’s Republic of China
  • X.E. Mu
    North China University of Technology, Beijing, People’s Republic of China
 
  An ARM9 based embedded controller for 100 MeV cyclotron RF control has been successfully developed and tested with EPICS control software. The controller is implemented as a 3U VME long card, located in the first slot of the LLRF control crate, as a supervise module that continuously monitors the status of the RF system through a costume designed backplane and related ADCs located on other boards in the crate. For high components density and signal integrate considerations, the PCB layout adopts a 6-layer design. The Debian GNU/Linux distribution for the ARM architecture has been selected as operating system for both robustness and convenience. EPICS device support as well as Linux driver routings has been written and tested to interface database records to the on board 12 multichannel 16-bit ADCs and DACs. In the meantime, a chip selecting encoding-decoding strategy has been implemented from both software and hardware aspects to extend the SPI bus of the AT91SAM9g20 processor. The detailed software as well as hardware designed will be reported in this paper.  
poster icon Poster MOPHA165 [0.344 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA165  
About • paper received ※ 18 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA169 Design of Vacuum Control System for Superconducting Accelerator 634
 
  • J.M. Zhou, A.L. Li, K.N. Li, C.H. Peng, J. Zheng
    CIAE, Beijing, People’s Republic of China
 
  A linear superconducting accelerator is being constructed in our institute. Its vacuum control system should be convenient and reliable. We intend to concentrate the control of each vacuum unit into a control box that implement the simple hard interlocking logic and the final action output of the vacuum device and the complete interlocking logic between the vacuum devices is realized in the PLC. Operators can perform local operation through the front panel of the control box or remotely control through the computer by switching the local/remote switch. In addition, the control flow of vacuum extraction and the protection flow when leakage occurs are also given in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA169  
About • paper received ※ 28 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOSH3001 An EPICS Channel Access Implementation on Siemens PLCs 648
MOPHA018   use link to see paper's listing under its alternate paper code  
 
  • M. Boros
    evopro Holding Zrt., The evopro group, Budapest, Hungary
  • R.N. Fernandes
    ESS, Lund, Sweden
  • B. Peceli, G. Singler
    evopro Innovation Ltd, Budapest, Hungary
 
  At the European Spallation Source (ESS), a neutron research facility in Sweden, most of the controls are based on PLCs and layered in the following (traditional) way: field equipment <-> PLC <-> EPICS IOC <-> high-level applications. In many situations, the EPICS IOC layer will not implement control logic per se and is only used for converting PLC tags into EPICS PVs to enable the usage of high-level applications such as CS-Studio, Archiver Appliance, and BEAST. To alleviate this (traditional) way of doing controls, we propose a simpler approach: implementation of the Channel Access (CA) protocol in the PLC layer for the latest family of Siemens PLCs to remove the EPICS IOC layer. We called it S7EPICS. S7EPICS fully respects version 13 of the CA protocol specification, and supports multiple EPICS-based client connections at the same time - e.g. CS-Studio, Archiver Appliance - without a noticeable service degradation (i.e. delays). In this paper we introduce this implementation, its architecture and workflow, benchmarking results of tests performed, and future developments that could be pursued such as authentication & authorization mechanisms using, e.g., the Arrowhead Framework.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOSH3001  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBPP01 Control System Development and Integration at ELI-ALPS 880
 
  • L. Schrettner, B. Bagó, B. Erdohelyi, L.J. Fülöp, F. Horvath, Sz. Horváth, Z. Héjja, V. Kurusa, G. Kávai
    ELI-ALPS, Szeged, Hungary
 
  Funding: ELI-ALPS is supported by the European Union and cofinanced by the European Regional Development Fund (GOP-1.1.1-12/B-2012-000, GINOP-2.3.6-15-2015-00001)
ELI-ALPS will be the first large-scale attosecond facility accessible to the international scientific community and its user groups. Control system development has three major directions: vacuum control systems, optical control systems, as well as the integrated control, monitoring and data acquisition systems. The development of the systems has asked for different levels of integration. In certain cases low-level devices are integrated (e.g. vacuum valves), while in other cases complete systems are integrated (e.g. the Tango interface of a laser system). This heterogeneous environment is managed through the elaboration of a common and general architecture. Most of the hardware elements are connected to PLCs (direct control level), which are responsible for the low-level operation of devices, including machine protection functions, and data transfer to the supervisory control level (CLIs, GUIs). Certain hardware elements are connected to the supervisory layer (cameras), as well as the Tango interface of the laser systems. This layer handles also data acquisition with a special focus on the metadata catalogue.
 
slides icon Slides WEBPP01 [2.684 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEBPP01  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBPP02 Centralized System Management of IPMI Enabled Platforms Using EPICS 887
 
  • K. Vodopivec
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by the U.S. Department of Energy under contract DE-AC0500OR22725.
Intelligent Platform Management Interface (IPMI) is a specification for computer hardware platform management and monitoring. The interface includes features for monitoring hardware sensors like fan speed and device temperature, inventory discovery, event propagation and logging. All IPMI functionality is accessible without the host operating system running. With its wide support across hardware vendors and the backing of a standardization committee, it is a compelling instrumentation for integration into a control system for large experimental physics projects. Integrating IPMI into EPICS provides the benefit of centralized monitoring, archiving and alarming integrated with the facility control system. A new project has been started to enable this capability by creating a native EPICS device driver built on the open-source FreeIPMI library for the remote host connection interface. The driver supports automatic system components discovery for creating EPICS database templates, detailed device information from Field Replaceable Unit interface, sensor monitoring with remote threshold management, geographical PV addressing in PICMG based platforms and PICMG front panel lights readout.
 
slides icon Slides WEBPP02 [7.978 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEBPP02  
About • paper received ※ 02 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBPP03 The Laser Megajoule Facility: Front End’s Control System 891
 
  • J. Langot, C. Baret, P. Fourtillan, J.F. Gleyze, D. Hamon, D. Lebeaux, A. Perrin
    CEA, LE BARP cedex, France
 
  The Laser Megajoule (LMJ) is a 176-beam laser facility, located at the CEA CESTA Laboratory near Bordeaux (France). It is designed to deliver about 1.5 MJ of energy to targets, for high energy density physics experiments, including fusion experiments. Six 8-beams bundles are currently operational. The Front-End is the LMJ subsystem built to deliver the laser pulse which will be amplified into the bundles. It consists of 4 laser seeders, producing the laser pulses with the expected specificities and 88 Pre-Amplifier Modules (PAM). In this paper, we introduce the architecture of the Front-End’s control system which coordinate the operations of the laser seeders and the PAMs’s control systems. We will discuss the ability of the laser seeders and their control systems to inject the 88 PAMs almost independently. Then we will deal with the functions that enable the expected laser performances in terms of energy, spatial and temporal shapes. Finally, the technics used to validate and optimize the operation of the software involved in the Front-End’s equipment performance will be detailed.  
slides icon Slides WEBPP03 [58.495 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEBPP03  
About • paper received ※ 26 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBPP04 P99: An Optical Beamline for Offline Technique Development and Systems Integration for Prototype Beamline Instrumentation 898
 
  • A.D. Parsons, S. Ahmed, M. Basham, D. Bond, B. Bradnick, M.H. Burt, T.M. Cobb, N. Dougan, M. Drakopoulos, J. Ferner, J. Filik, C.A. Forrester, L. Hudson, P. Joyce, B. Kaulich, A. Kavva, J.H. Kelly, J. Mudd, B.J. Nutter, N. O’Brien, P.D. Quinn, K.A. Ralphs, C. Reinhard, J. Shannon, M.P. Taylor, T.E. Trafford, X.T. Tran, E. Warrick, A.A. Wilson, A.D. Winter
    DLS, Oxfordshire, United Kingdom
 
  Diamond Light Source is a publicly funded 3rd generation national synchrotron which will soon operate 39 state-of-the-art instruments covering a wide range of physical and life science applications. Realization of such instruments poses many challenges from initial scientific concept, to final user experience. To get best efficiency, Diamond operates a modular approach for engineering and software systems support, usually with custom hardware or software component coming together on the final instrument in-situ. To facilitate cross-group collaboration, prototyping, integrated development and testing of the full instrument including scientific case before the final implementation, an optical prototyping setup has been developed which has an identical backend to real beamline instruments. We present detail of the software and hardware components of this environment and how these have been used to develop functionality for the new operational instruments. We present several high impact examples of such integrated prototyping development including the instrumentation for DIAD (integrated Dual Imaging And Diffraction) and the J08 beamline for: soft X-ray ptychography end-station.  
slides icon Slides WEBPP04 [10.428 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEBPP04  
About • paper received ※ 01 October 2019       paper accepted ※ 21 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEMPL006 The Miniscule ELT Control Software: Design, Architecture and HW integration 1010
WEPHA043   use link to see paper's listing under its alternate paper code  
 
  • C. Diaz Cano, R. Abuter, T.R. Grudzien, N. Kornweibel, J. Sagatowski, H. Tischer
    ESO, Garching bei Muenchen, Germany
 
  Funding: E.S.O.
This paper presents the development of the Miniscule ELT (MELT) Control Software. MELT is an optical test bench with a turbulence generator, whose main objective is to deploy and validate key functionalities of central control system and the Wavefront control strategies on the Extremely Large Telescope (ELT) during AIV/commissioning and operation phase. The subsystems under control are: a segmented primary mirror, a secondary mirror on a hexapod, an adaptive fourth mirror, a fast tip/tilt mirror, phasing sensor, a light source, a Wavefront sensor, a IR camera, together with their control interfaces that emulate the ELT conditions. The Core Integration Infrastructure will be deployed to MELT for their verification and testing strategy, producing feedback to their requirements and design. This paper describes the Control SW distributed architecture, communication patterns, user interfaces and SW infrastructure. The control algorithms are being developed separately and will be integrated into the control loop via MATLAB scripts.
*MELT - An optomechanical emulation testbench for ELT wavefront
control and phasing strategy
 
poster icon Poster WEMPL006 [20.614 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPL006  
About • paper received ※ 30 September 2019       paper accepted ※ 03 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEMPL007 EPICS Controlled Wireless Sensors 1015
WEPHA173   use link to see paper's listing under its alternate paper code  
 
  • M.T. Rolland
    Stony Brook University, Computer Science Department, Stony Brook, New York, USA
  • K.J. Gofron
    BNL, Upton, New York, USA
 
  At the trade-off of power, wireless technologies are much more portable and convenient than their wired counterparts. This is especially true in the scientific sphere, where many environmental factors must be recorded at all times at as many locations as possible. Using these technologies, scientists can often reduce cost while maximizing the number of sensors without compromising sensor quality. To this end, we have developed EPICS controllers for both Bluetooth Low Energy (BLE) sensors and XBee ZigBee sensors. For BLE, we chose the Nordic Thingy:52 for its low cost, high battery life, and impressive range of sensors. The controller we developed combines EPICS base functions, the Bluetooth generic attribute data structure library, and multithreading techniques to enable real-time broadcast of the Thingy’s 20+ sensors’ live values. Because BLE is limited in range, we also developed a controller for the XBee sensor which, through the ZigBee mesh protocol, can expand its range through each node added into the network. With these controllers, NSLS-II scientists will have access to a whole new class of sensors which are both easier to deploy and cheaper than their wired predecessors.  
slides icon Slides WEMPL007 [1.569 MB]  
poster icon Poster WEMPL007 [1.589 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPL007  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEMPR003 Exploring Embedded Systems’ Dedicated Cores for Real-Time Applications 1036
WEPHA107   use link to see paper's listing under its alternate paper code  
 
  • P.H. Nallin, J.G.R.S. Franco, R.C. Ito, A.R.D. Rodrigues
    LNLS, Campinas, Brazil
 
  Developments and research in high technology leads to powerful and sophisticated machines which are highly important for many scientific fields. Considering real-time applications, however, these systems tend to become non-deterministic and users may find themselves inside a not completely controllable environment. Exploring open-hardware single board computers with a system-on-a-chip which usually runs an operational system on their main processor(s) and also have real-time units is a good alternative. These real-time units are designed as a microcontroller embedded on the chip where a firmware is loaded, runs concomitantly and exchanges data with the main system. As a result, it is possible to achieve performance increase, high temporal resolution and low latency and jitter, features that are widely desired for controls and critical data acquisition systems. This system architecture allows moving real-time data into high level servers, such as Redis (Remote Dictionary Server) and EPICS, easily. This paper introduces and shows uses of Beaglebone Black, an inexpensive single-board computer, its Programmable Real-Time Units (PRUs) and data sharing with Redis data structure.  
poster icon Poster WEMPR003 [6.128 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPR003  
About • paper received ※ 30 September 2019       paper accepted ※ 18 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA002 LCLS-II Cryomodule and Cryogenic Distribution Control 1071
 
  • D.T. Robinson, A.L. Benwell, C. Bianchini, D. Fairley, S.L. Hoobler, K.J. Mattison, J. Nelson, A. Ratti
    SLAC, Menlo Park, California, USA
  • L.E. Farrish, J. Gubeli, C. Hovater, K. Jordan, W. Moore
    JLab, Newport News, Virginia, USA
  • J.A. Kaluzny, A. Martinez
    Fermilab, Batavia, Illinois, USA
 
  The new superconducting Linear Coherent Light Source (LCLS-II) at the SLAC National Accelerator Laboratory will be an upgrade to LCLS, the world’s first hard X-ray free-electron laser. LCLS-II is in an advanced stage of construction with equipment for both Cryoplants as well as more than half of the 37 cryomodules onsite. Jefferson Lab (JLab) is a partner lab responsible for building half of the LCLS-II cryomodules. Hence the Low Energy Recirculation Facility (LERF) at JLab was used to stage and test LCLS-II cryomodules before shipping them to SLAC. LERF was set up to test two cryomodules at a time. LERF used LCLS-II cryogenic controls instrumentation racks, Programmable Logic Controllers (PLC) controls and Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs) with the intention to use the LERF setup to check-out and verify cryogenic controls for LCLS-II. The cryogenic controls first utilized at LERF would then be replicated for controlling all 37 cryomodules via an EPICS user interface. This paper discusses the cryogenic controls currently developed for implementation in the LCLS-II project.  
poster icon Poster WEPHA002 [1.119 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA002  
About • paper received ※ 28 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA010 Control Systems Design for LCLS-II Fast Wire Scanners at SLAC National Accelerator Laboratory 1075
 
  • N. Balakrishnan, H. Bassan, J.D. Bong, M.L. Campell, P. Krejcik, K.R. Lauer, J.J. Olsen, L. Sapozhnikov
    SLAC, Menlo Park, California, USA
 
  One of the primary diagnostic tools for beam emittance measurement at the Linac Coherent Light Source II (LCLS-II), an upgrade of the SLAC National Accelerator Laboratory’s Linac Coherent Light Source (LCLS) facility, is the wire scanners. LCLS-II’s new Fast Wire Scanner (FWS) is based on a similar mechanical design of linear servo motor with position feedback from an incremental encoder as that for LCLS. With a high repetition rate of up to 1 MHz from the superconducting accelerator of LCLS-II, it is no longer sufficient to use point-to-point EPICS-controlled moves from wire to wire, as continued exposure will damage the wires. The system needs to perform on-the-fly scans, with a single position versus time profile calculated in advance and executed in a single coordinated motion by Aerotech Ensemble motion controller. The new fast wire scanner control system has several advantages over LCLS fast wire scanner controls with the capability to program safety features directly on the drive and integrate machine protection checks on an FPGA. This paper will focus on the software architecture and implementation for LCLS-II Fast Wire Scanners.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA010  
About • paper received ※ 30 September 2019       paper accepted ※ 11 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA013 Programmable Logic Controller Systems for SPIRAL2 1089
 
  • C. Berthe, F. Bucaille, G. Delavallee, G. Duteil, C. Hocini, J.-F. Rozé, A.H. Trudel, Q. Tura
    GANIL, Caen, France
  • P.G. Graehling
    IPHC, Strasbourg Cedex 2, France
  • R. Touzery
    CEA-DRF-IRFU, France
 
  PLC provides a large part of the SPIRAL 2 project’s commands. The SPIRAL2 project is based on a multi-beam driver in order to allow both ISOL and low-energy in-flight techniques to produce Radioactive Ion Beams (RIB). A superconducting light/heavy-ion linac with an acceleration potential of about 40 MV capable of accelerating 5 mA deuterons up to 40 MeV and 1 mA heavy ions up to 14.5 MeV/u is used to bombard both thick and thin targets. The PLCs provide vacuum control, access control, part of the machine protection system, control of the cryogenic distribution system, cooling controls, control of RF amplifiers, they are associated with the safety control system. The standards used are presented as well as the general synoptic of the PLC control system. The details of the major systems are presented, the Cryo distribution, the machine protection system, a safety system.  
poster icon Poster WEPHA013 [4.786 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA013  
About • paper received ※ 30 September 2019       paper accepted ※ 19 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA017 Integration of Wireless Mobile Equipment in Supervisory Application 1102
 
  • S. Blanchard, R. Ferreira, P. Gomes, G. Pigny, A.P. Rocha
    CERN, Geneva, Switzerland
 
  Pumping group stations and bake-out control cabinets are temporarily installed close to vacuum systems in CERN accelerator tunnels, during their commissioning. The quality of the beam vacuum during operation depends greatly on the quality of the commissioning. Therefore, the integration of mobile equipment in the vacuum supervisory application is primordial. When connected to the control system, the mobile stations appear automatically integrated in the synoptic. They are granted with the same level of remote control, diagnostics and data logging as fixed equipment. The wireless connection and the communication protocol with the supervisory application offer a flexible and reliable solution with high level of integrity.  
poster icon Poster WEPHA017 [1.808 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA017  
About • paper received ※ 30 September 2019       paper accepted ※ 19 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA018 Testing Solutions for Siemens PLCs Programs Based on PLCSIM Advanced 1107
 
  • E. Blanco Viñuela, D. Darvas
    CERN, Geneva, Switzerland
  • Gy. Sallai
    BUTE, Budapest, Hungary
 
  Testing Programmable Logic Controllers (PLCs) is challenging, partially due to the lack of tools for testing. Isolating a part of the PLC program, feeding it with test inputs and checking the test outputs often require manual work and physical hardware. The Siemens PLCSIM Advanced tool can simulate PLCs and provide a rich application programming interface (API). This paper presents a new CERN made tool based on PLCSIM Advanced and the TIA Portal Openness API. The tool takes a test case described in an intuitive, tabular format, which is then executed with the full PLC program or a selected part of it, effectively allowing unit testing. The inputs can be fed and the outputs can be captured via the PLCSIM API. This way the tests can be executed and evaluated automatically, without manual work or physical hardware. Therefore, it is possible to provide an automated and scalable continuous testing solution for PLC programs to reveal errors as early as possible.  
poster icon Poster WEPHA018 [1.026 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA018  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA033 Construction and Implementation of Control and DAQ System of Micro Crystallography (MX) Beamline via Server Virtualization 1149
 
  • H.J. Choi, H.S. Kim, S.W. Kim, W.W. Lee
    PAL, Pohang, Republic of Korea
 
  The project aimed to implement a beamline control and data collection system through a server virtualization system, and was applied to the 5C beamline of the 3rd generation beamline of Pohang Accelerator Laboratory (PAL). The 5C beamline is currently under construction for the FBDD beamline with the goal of building a fully automated beamline. Therefore, the project was started to operate stably and efficiently various systems to be applied to the beamline. The control system was implemented using EPICS software tools and MxDC/MxLive software for data acquisition and storage. The control and data collection system of this beamline is integrated using XCP-ng[1] (XenServer Based), and it is in operation. With the integrated server virtualization system, network organization / simplification and data send/receive between systems are more stabilized. The overall size of the system has been significantly reduced, making maintenance easier.  
poster icon Poster WEPHA033 [0.860 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA033  
About • paper received ※ 30 September 2019       paper accepted ※ 19 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA034 Software Tools for Hardware Elliptical Cavity Simulator Management and Configuration 1153
 
  • W. Cichalewski, K. Klys
    TUL-DMCS, Łódź, Poland
 
  Funding: Work supported by Polish Ministry of Science and Higher Education, decision number DIR/WK/2016/2017/03-1
The European Spallation Source (ESS) is currently in the middle of its construction phase. This facility linear accelerator consists of different sections. Superconducting part of this linac will be equipped with spokes and elliptical cavities (like M-Beta and H-Beta types). Various ESS linac components will be delivered by different in-kind partners from Europe. In order to provide a reliable development and evaluation platform hardware-based electronic cavity simulator have been built. This solution is especially useful for Low Level Radio Frequency (LLRF) systems development and integration in case of limited access to real superconducting structures. This contribution presents software tools developed for efficient cavity simulator parameters configuration and management. Solutions based on Python and EPICS framework are presented. Tool adaptation to ESS proposed E3 framework and experience from cavity simulator operation are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA034  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA046 EtherCAT Open Source Solution at ESS 1195
 
  • J. Etxeberria, J.H. Lee, A. Sandström
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a research facility being built in Lund, Sweden. The Integrated Control System (ICS) division at ESS is responsible for defining and providing a control system for all the ESS facility. ICS decided to establish open-source EtherCAT systems for mid-performance data acquisition and motion control for accelerator applications. For instance, EtherCAT will be used when the I/O system needs to be beam-synchronous; it needs to acquire signals in the kHz range; or needs to be spread across locations that are far from each other and would need cumbersome cabling, but still, belong to one system. Following the ICS guideline, Motion Control and Automation Group developed EtherCAT Motion Control (ECMC) which is based on EtherLab open-source master. This solution was focused on Motion Control applications, but finally, data acquisition systems will be integrated into EPICS using the same approach. In this paper, we will present the ECMC solution and analyze its features showing some real applications at ESS.  
poster icon Poster WEPHA046 [2.580 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA046  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA063 Precision Insertion Device Control and Simultaneous Monochromator Fly Scanning for NSLS-II 1244
 
  • J. Sinsheimer, P.L. Cappadoro, T.M. Corwin, J. Escallier, D.A. Harder, D.A. Hidas, A. Hunt, M. Musardo, J. Rank, C. Rhein, T. Tanabe, I. Waluyo
    BNL, Upton, New York, USA
 
  Funding: U.S. Department of Energy DE-SC0012704
Beginning in January of 2019, 8 of the 10 In-Vacuum Undulators installed in the NSLS-II storage ring underwent in-house in-situ control system upgrades allowing for control of the magnetic gap during motion down to the 50 nm level with an in-position accuracy of nearly 5 nm. Direct linking of Insertion Devices and beamline monochromators is achieved via a fiber interface allowing precise, simultaneous, nonlinear motion of both devices and providing a fast hardware trigger for real-time accurate insertion device and monochromator fly scanning. This presentation will discuss use case scenarios at light source facilities and detail the precision achieved for simultaneous motion. Particular attention is given to the precision at which undulator energy harmonic peaks can be tracked and the variation of the peak flux in motion.
 
poster icon Poster WEPHA063 [1.763 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA063  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA080 A Communication Protocol for Motion Control Applications at the JCNS Neutron Instruments 1276
 
  • H. Kleines, F. Suxdorf
    FZJ, Jülich, Germany
 
  Main focus of slow control in neutron scattering is motion control for the movement of around 25 mechanical axes in a typical neutron instrument. The implementation of motion control functions in the JCNS neutron instruments at the FRM II research reactor in Garching, Germany, is based on Siemens S7 PLCs. A communication protocol called PMcomm which is optimized for motion control applications in neutron instruments has been developed at JCNS. PMcomm (PROFI motion communication) is based on PROFINET or PROFIBUS as the underlying transport protocol in order to facilitate the easy integration into the PLC world. It relies on the producer/consumer communication mechanism of PROFINET and PROFIBUS for the efficient direct access to often-used data like positions or status information. Coordinated movement of groups of axes is facilitated by a generic controller/axes model that abstracts from the specifics of the underlying motion control hardware. Simplicity was a major design goal of the protocol in order to allow an efficient and easy implementation on PLCs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA080  
About • paper received ※ 08 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA083 ophyd Devices: Imposing Hierarchy on the Flat EPICS V3 Namespace 1284
 
  • K.R. Lauer
    SLAC, Menlo Park, California, USA
 
  Funding: This work was performed in support of the LCLS project at SLAC supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.
EPICS V3 provides simple data types accessible over the network through Channel Access identified by a flat process variable (PV) name. This flexibility is often regarded as a strength of EPICS, as the user can easily pick and choose the information they require. However, such data is almost always inter-related in some manner, pushing the burden of reconstructing that relationship to the end-user/client. ophyd represents hardware in Python as hierarchical classes, grouping together related signals from the underlying control system. ophyd devices make imposing this hierarchy simple, readable, and descriptive. This structure allows ophyd to provide a consistent interface across a wide-range of devices, which can then be used by higher-level software for any number of tasks: from command-line inspection, to scanning/data collection (bluesky), or even automatic GUI generation (typhon, adviewer). ophyd contains a number of pre-built devices for common hardware (and IOCs) as well as the tools to build custom devices.
 
poster icon Poster WEPHA083 [2.385 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA083  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA097 Development of a Tango Interface for the Siemens-Based Control System of the Elettra Infrastructure Plants 1321
 
  • P. Michelini, I. Ferigutti, F. Giacuzzo, M. Lonza, G. Scalamera, G. Strangolino, M. Trevi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The control system of the Elettra Sincrotrone Trieste infrastructure plants (cooling water, air conditioning, electricity, etc.) consists of several Siemens PLCs connected by an Ethernet network and a number of management stations running the Siemens Desigo software for high-level operation and monitoring, graphical display of the process variables, automatic alarm distribution and a wide range of different data analysis features. No external interface has been realized so far to connect Desigo to the Elettra and FERMI accelerator control systems based on Tango, making it difficult for the control room operators to monitor the conventional plant operation and parameters (temperature, humidity, water pressure, etc.), which are essential for the accelerator performance and reliability. This paper describes the development of a dedicated Desigo application to make selected process variables externally visible to a specific Tango device server, which then enables the use of all the tools provided by this software framework to implement graphical interfaces, alarms, archiving, etc. New proposals and developments to expand and improve the system are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA097  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA113 EPICS Maintenance Tools and Practices at FRIB’s Diagnostics Department 1356
 
  • D.O. Omitto, S. Cogan, B.S. Martins
    FRIB, East Lansing, Michigan, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The Beam Instrumentation and Measurements department is responsible for dozens of different diagnostics devices deployed at multiple locations at the Facility for Rare Isotope Beam. In order to manage such a high number of devices, different tools were created to address preventive and corrective maintenance tasks and check the overall health of the equipment. This work will present how the EPICS tools and frameworks, such as archiver, channel finder, and pyDevSup, were integrated with our environment to help achieve a high availability for the beam diagnostic devices.
 
poster icon Poster WEPHA113 [0.573 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA113  
About • paper received ※ 30 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA114 Integration of New Siemens S7-1500 PLC Family in UNICOS-CPC: Engineering Challenges and Performance Evaluation 1359
 
  • J.O. Ortolá Vidal, M. Vazquez Muñiz
    CERN, Geneva, Switzerland
 
  UNICOS-CPC (UNified Industrial COntrol System - Continuous Control Package) framework is the CERN standard solution for the design and implementation of continuous industrial process control applications. This paper reports on the design and test results of the integration of a new PLC platform, the new S7-1500 Siemens PLC (Programmable Logic Controllers) series. Special focus is given to the challenges faced during the integration due to the new software architecture of the PLC, as well as to the early stage of the development and interfaces provided by the supplier. The paper shows the TIA portal openness capabilities of the PLC development tool and presents a comprehensive evaluation of the PLC-SCADA communication mechanisms, as well as their integration in UNICOS-CPC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA114  
About • paper received ※ 26 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA125 Integrating IoT Devices Into the CERN Control and Monitoring Platform 1385
 
  • B. Copy, M. Bräger, A. Papageorgiou Koufidis, E. Piselli, I. Prieto Barreiro
    CERN, Geneva, Switzerland
 
  The CERN Control and Monitoring Platform (C2MON) offers interesting features required in the industrial controls domain to support Internet of Things (IoT) scenarios. This paper aims to highlight the main advantages of a cloud deployment solution, in order to support large-scale embedded data acquisition and edge computing. Several IoT use cases will be explained, illustrated by real examples carried out in collaboration with CERN Knowledge Transfer programme.  
poster icon Poster WEPHA125 [1.854 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA125  
About • paper received ※ 27 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA132 The Development of Object Detection System for Industrial Linac Project at SLRI 1404
 
  • R. Rujanakraikarn, P. Koonpong, S. Tesprasitte
    SLRI, Nakhon Ratchasima, Thailand
 
  The prototype of linear accelerator for industrial applications has been under development at Synchrotron Light Research Institute (SLRI). The primary purpose of this new project is for food irradiation application using x-ray. For efficient beam scanning purpose, a real-time object detection system has been developed by using a machine vision USB camera. The software has been developed by using OpenCV which is run on an embedded system platform. The result of the image analysis algorithm is used to control a beam scanning magnet system of the linac in real-time. The embedded system, both hardware selection and software design, running the object detection task will be described in this paper.  
poster icon Poster WEPHA132 [0.899 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA132  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA150 SLED Tuning Control System for PAL-XFEL 1446
 
  • Y.J. Suh, H. Heo, H.-S. Kang, C. Kim, K.H. Kim, G. Mun, Y.J. Park
    PAL, Pohang, Republic of Korea
 
  A total of 42 SLED Tuners are installed at the PAL-XFEL (4th generation light source) acceleration section. To adjust this, a person directly enters the Tunnels and adjusts them manually. When the SLED Tuners are equipped with a motor, it can be adjusted remotely and the intensity of the beam is also monitored while monitored while monitoring the output of the Klystron. In addition, by storing the tuning point according to the XFEL beam rate as the LVDT value, it is possible to control the SLED bar according to the beam rate changing in real time, which is helpful to provide stable beam. In order to remotely control this device, an additional motor, LVDT, and limit switch are attached. Each device is connected to the controller and can be operated and data remotely from the cab through the EPICS IOC and CSS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA150  
About • paper received ※ 26 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA159 Integrating Conventional Facilities Systems via BACnet 1456
 
  • S.B. Webb
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC05-00OR22725.
Conventional facility controls, such as those used for water and cooling systems, are often developed and operated independent of the accelerator control system using commercial SCADA systems. At the Spallation Neutron Source, these systems are fully integrated into the EPICS based machine control system to facilitate optimal machine performance. BACnet is the predominant communication protocol used in the building automation industry, thus inspiring SNS to develop a BACnet/IP software driver for EPICS to enable this integration. This paper describes how SNS uses the BACnet driver and standard EPICS tools to perform custom chiller sequencing to manage chiller system performance and meet accelerator requirements for high availability.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA159  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA170 First Steps in Automated Software Development Approach for LHC Phase II Upgrades CO2 Detector Cooling Systems 1488
 
  • L. Zwalinski, J. Daguin, L.T. Davoine, N. Frank, D. Giakoumi, M. Ostrega, P. Petagna, P. Tropea, B. Verlaat
    CERN, Meyrin, Switzerland
 
  With refrigerating power of the order of 1.5 kW at -35 °C and full compatibility with Detector Control System standards, Light Use Cooling Appliance for Surface Zones (LUCASZ) is the first movable medium size evaporative CO2 detector cooling system. By 2018 a series of 4 LUCASZ units has been fully deployed by the EP-DT group at CERN. LUCASZ is capable to provide CO2 cooling for various needs of detector development and testing required for Phase I&II upgrades of LHC experiments. This paper describes selected software and controls hardware ideas used to develop the LUCASZ control system as baseline solutions for CO2 cooling systems for Phase II upgrade of ATLAS and CMS trackers. The main challenges for future control system development will come from the number of cooling plants, the modularity, operation, and the implementation of backup philosophy. The introduction of automated software generation for both PLC and SCADA is expected to bring major improvement on the efficiency of control system implementation. In this respect, a unification step between experiments is highly required without neglecting specific needs of ATLAS and CMS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA170  
About • paper received ※ 29 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA174 ADUVC - an EPICS Areadetector Driver for USB Video Class Devices 1492
 
  • J. Wlodek
    Stony Brook University, Computer Science Department, Stony Brook, New York, USA
  • K.J. Gofron
    BNL, Upton, New York, USA
 
  Most devices supported by EPICS areaDetector fall under one of two categories: detectors and cameras. Many of the cameras in this group can be classified as industrial cameras, and allow for fine control of exposure time, gain, frame rate, and many other image acquisition parameters. This flexibility can come at a cost however, with most such industrial cameras’ prices starting near one thousand dollars, with the price rising for cameras with more features and better hardware. While these prices are justified for situations that require a large amount of control over the camera, for monitoring tasks and some basic data acquisition the use of consumer devices may be sufficient while being far less cost-prohibitive. The solution we developed was to write an areaDetector driver for USB Video Class (UVC) devices, which allows for a variety of cameras and webcams to be used through EPICS and areaDetector, with most costing under $100.  
poster icon Poster WEPHA174 [1.658 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA174  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPP01 Automatic Generation of PLC Projects Using Standardized Components and Data Models 1532
 
  • S.T. Huynh, H. Ali, B. Baranasic, N. Coppola, T. Freyermuth, P. Gessler, N. Jardón Bueno, M. Stupar, J. Tolkiehn, J. Zach
    EuXFEL, Schenefeld, Germany
 
  In an environment of rapidly expanding and changing control systems, a solution geared towards the automation of application dependent Programmable Logic Controller (PLC) projects becomes an increasing need at the European X-Ray Free Electron Laser (EuXFEL). Through the standardization of components in the PLC Framework, it becomes feasible to develop tools in order to automate the generation of over 100 Beckhoff PLC Projects. The focus will be on the PLC Management System (PLCMS) tool developed to achieve this. Provided with an electrical diagram markup (EPLAN XML export), the PLCMS queries the database model populated from the PLC Framework. It captures integration parameters and compatible EtherCAT fieldbus hardware. Additionally, inter-device communication and interlocking processes are integrated into the PLC from a defined user template by the PLCMS. The solution provides a flexible and scalable means for automatic and expedited deployment for the PLC control systems. The PLCMS can be further enhanced by interfacing into the Supervisory Control and Data Acquisition (SCADA) system for complete asset management of both PLC software and connected hardware across the facility.  
slides icon Slides THAPP01 [0.908 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THAPP01  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPP02 The Control System of the Elliptical Cavity and Cryomodule Test Stand Demonstrator for ESS 1538
 
  • A. Gaget, T.J. Joannem
    CEA-DRF-IRFU, France
 
  CEA IRFU Saclay* is taking part of ESS (European Spallation Source)** construction through several packages and, especially in the last three years on the Elliptical Cavity and Cryomodule Test stand Demonstrator (ECCTD)***. The project consists of RF test, conditioning, cryogenic cool-down and regulations of eight cryomodules with theirs four cavities each. For now, two medium beta cavities cryomodules have been successfully tested. This paper describes the context and the realization of the control system for cryogenic and RF processes, added to cavities tuning motorization relying on COTS solutions: Siemens PLC, EtherCAT Beckhoff modules, IOxOS fast acquisition cards and MRF timing cards.
*IRFU, https://irfu.cea.fr/en/
**ESS, https://europeanspallationsource.se/
***ECCTD, http://irfu.cea.fr/dacm/en/Phocea/Viedeslabos/Ast/astvisu.php?idast=3359
 
slides icon Slides THAPP02 [6.841 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THAPP02  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPP03 Construction of Beam Monitor Control System for Beam Transport From SACLA to SPring-8 1544
 
  • A. Kiyomichi, N. Hosoda, M. Yamaga
    JASRI, Hyogo, Japan
  • T. Fukui
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • M. Ishii
    JASRI/SPring-8, Hyogo-ken, Japan
  • H. Maesaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  In a part of the SPring-8 upgrade project, the SACLA linac will be used as the injector for the SPring-8 storage ring. We will upgrade the beam monitor system for beam transport, which consists of screen monitor (SCM), beam position monitor (BPM) and current monitor (CT). For the SCM, we adopted GigE Vision standard for the CCD camera and EtherCAT as a field bus for the stepper motor control of focusing system. We have developed camera control software using open source libraries to integrate various vendors’ GigE Vision cameras with the SPring-8 control framework. A grabbed image is stored into the file server and property, such as camera settings for image and event number, is stored into the database. The BPM is a key device for precise and stable injection. We adopted the commercially available MTCA.4 fast ADC/DAC module with modified firmware developed for readout of the BPM and the CT. We are developing acquisition software for MTCA.4 modules to synchronize with a beam trigger. The acquired data are stored into the database with time stamp and event number. We present the preparation of beam monitor control system for the beam transport to injection from SACLA to SPring-8.  
slides icon Slides THAPP03 [9.593 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THAPP03  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPP04 EPICS Tools for Small Experiment Based on PLC 1549
 
  • P. Lotrus, Q. Bertrand, F. Gohier, T.J. Joannem, K. Saintin
    CEA-IRFU, Gif-sur-Yvette, France
  • G.A. Durand, N. Solenne
    CEA-DRF-IRFU, France
 
  IRFU* software control team is involved from feasibility studies to equipment deployment into many different experiments by their size and running time. For many years, IRFU is using PLC solution for controlling part of the experiment, and two different SCADA: - MUSCADE, in-house SCADA dedicated to small experiments. - EPICS** for big facilities. With MUSCADE, IRFU has developed a set of tools that gives an easy and a fast way for PLC developers to configure the SCADA. As EPICS projects are growing in our department, we are working now on adapting those tools to EPICS: - PLCParser, which generates an EPICS database for PLC communication (S7PLC, Modbus). - CAFEJava (Channel Access For EPICS Java) API, which runs a simulated EPICS IOC to test EPICS synoptic, and provides EPICS process variables access for any Java application. - Dxf2Opi, which converts Autocad DXF files into OPI files for CSS*** software. - MOONARCH (Memory Optimizer ON ARCHiver Appliance), which reduces EPICS Archiver Appliance**** data files storage.
*IRFU, http://irfu.cea.fr
**EPICS, https://epics-controls.org
***CSS, https://controlsystemstudio.org
****Archiver Appliance https://slacmshankar.github.io/epicsarchiverdocs
 
slides icon Slides THAPP04 [2.066 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THAPP04  
About • paper received ※ 11 September 2019       paper accepted ※ 11 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPP05 Overview of Acquisition and Control Electronics and Concepts for Experiments and Beam Transport at the European XFEL 1554
 
  • P. Gessler, H. Ali, F. Babies, K.-E. Ballak, H. Bamaga, B. Baranasic, O. Bieler, N. Coppola, K. Dornack, J. Eilers, D. Emes, B. Fernandes, M. Fobian, T. Freyermuth, S.T. Huynh, N. Jardón Bueno, M. Meyer, O. Oshtuk, P. Parlicki, J. Reifschläger, S. Sayar, H. Sotoudi Namin, M. Stupar, J. Tolkiehn, H. Vega Perez, S. Wagner, J. Zach
    EuXFEL, Schenefeld, Germany
 
  FPGA based fast electronics to acquire and pre-process signals of detectors and diagnostics and PLC based hardware and software for motion, vacuum and other control and monitoring applications are key elements of the European X-Ray Free Electron Laser. In order to bring the newly developed scientific user facility up and running, the underlying electrical and electronic components require a diverse array of tools and processes to be developed in order to meet the continually adapting requirements and make use of technological advances. Many challenges were faced, including high availability and up-time, adaptability to a dynamic environment, rapid lead-time for integration of complex components, numerous instrumentation installations and commissioning, high time resolution and subsequently, high demands on data and sampling rates, synchronization and real-time processing. In this contribution we will provide an overview of the selected technologies, developed concepts and solutions along with generically designed frameworks and tools, which aim to provide a high degree of standardization on the control systems and even automatic generation from requirements to final install.  
slides icon Slides THAPP05 [13.323 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THAPP05  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPP06 Double Crystal Monochromator Control System for Energy Materials In-Situ Laboratory Berlin (EMIL) 1561
 
  • A.F. Balzer, P. Sreelatha Devi, A. Ziegler
    HZB, Berlin, Germany
 
  A multi modal set-up provides synchrotron radiation with a broad energy range of 80 eV - 10 keV and variable polarization to the EMIL lab at BESSY II. Two canted undulators, five end stations, three monochromators, more than twenty optical elements, sample to source distances of more than 60 m are challenges by its own. The Double Crystal Monochromator (DCM) feeding the U17 hard X-ray beamlines was designed and optimized for stability and resolution. The mechanical concept of the U17/DCM puts high demands on the software. For on-the-fly synchronization of crystal pitch, crystal translation and the cryogenic cooling system rotation, a closed loop feedback is needed to fulfill the control system requirements. Motion programs are used for compensation of the non-linearities of the pitch rotation. Target positions are approached on a well defined path improving reproducibility and positioning time. A non-linear closed loop control provides fine positioning. A setup of the motion controller based on the tpmac module provides the abstraction interface to the complex DCM motion control software. This paper discusses the DCM hardware, the software model and experimental verification.  
slides icon Slides THAPP06 [2.672 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THAPP06  
About • paper received ※ 23 September 2019       paper accepted ※ 21 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)