Experiment Control
Paper Title Page
MOCPL01 IBEX: Beamline Control at ISIS Pulsed Neutron and Muon Source 59
 
  • K.V.L. Baker, F.A. Akeroyd, D.P. Keymer, T. Löhnert, C. Moreton-Smith, D.E. Oram
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.R. Holt, T.A. Willemsen, K. Woods
    Tessella, Abingdon, United Kingdom
 
  For most of its over 30 years of operation the ISIS Neutron and Muon Source has been using bespoke control software on its beamlines. In the last few years, we have been converting the beamline control software to IBEX*, which is based on the Open Source EPICS toolkit**. More than half the instruments at ISIS are now converted. IBEX must be robust and flexible enough to allow instrument scientists to perform the many experiments they can conceive of. Using EPICS as a base, we have built Python services and scripting support as well as developing an Eclipse/RCP GUI based on Control System Studio***. We use an Agile based development methodology with heavy use of automated testing and device emulators. As we move to the final implementation stage, we are handling new instrument challenges (such as reflectometry) and providing new functionality (live neutron data view, script generator and server). This presentation will cover an overview of the IBEX architecture, our development practices, what is currently in progress, and our future plans.
*J. Phys. Conf. Ser. 1021 (2018) 012019
**https://epics-controls.org/
***http://controlsystemstudio.org/
 
slides icon Slides MOCPL01 [5.325 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL01  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOCPL02 Modernization of Experimental Data Taking at BESSY II 65
 
  • R. Müller, A.F. Balzer, P. Baumgärtel, G. Hartmann, O.-P. Sauer, J. Viefhaus
    HZB, Berlin, Germany
 
  The modernization approach for the automation of experimental data taking at BESSY II will be based on the data model of devices. Control of new components and refactoring and reassembly of legacy software should fit into a device based framework. This approach guides the integration of motors, encoders, detectors and auxiliary subsystems. In addition modern software stacks are enabled to provide automation tools for beamline and experimental flow control and DAQ. Strategic goal is the mapping of real beamline components into modelling software to provide the corresponding digital twin. First tests applying DMA methods within this context for tuning are promising.  
slides icon Slides MOCPL02 [15.580 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL02  
About • paper received ※ 02 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOCPL03 Beamline Experiments at ESRF with BLISS 70
 
  • M. Guijarro, G. Berruyer, A. Beteva, L. Claustre, T.M. Coutinho, M.C. Dominguez, P. Guillou, C. Guilloud, A. Homs, J.M. Meyer, V. Michel, P. Pancino, E. Papillon, M. Perez, S. Petitdemange, L. Pithan, F. Sever, V. Valls
    ESRF, Grenoble, France
 
  BLISS is the new ESRF beamline experiments sequencer. BLISS is a Python library, and a set of tools to empower scientists with the ability to write and to execute complex data acquisition sequences. Complementary with Tango, the ESRF control system, and silx, the ESRF data visualization toolkit, BLISS ensure a smooth user experience from beamline configuration to online visualization. After a 4-year development period, the initial deployment phase is taking place today on half of ESRF beamlines, concomitantly with the ESRF Extremely Brilliant Source upgrade program. This talk will present the BLISS project in large, focusing on feature highlights and technical information as well as more general software development considerations.  
slides icon Slides MOCPL03 [7.772 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL03  
About • paper received ※ 30 September 2019       paper accepted ※ 02 November 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOCPL04 Software Architecture for Automatic LHC Collimator Alignment Using Machine Learning 78
 
  • G. Azzopardi, S. Redaelli, B. Salvachua
    CERN, Meyrin, Switzerland
  • A. Muscat, G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The Large Hadron Collider at CERN relies on a collimation system to absorb unavoidable beam losses before they reach the superconducting magnets. The collimators are positioned close to the beam in a transverse setting hierarchy achieved by aligning each collimator with a precision of a few tens of micrometers. In previous years, collimator alignments were performed semi-automatically*, requiring collimation experts to be present to oversee and control the entire process. In 2018, manual, expert control of the alignment procedure was replaced by dedicated machine learning algorithms, and this new software was used for collimator alignments throughout the year. This paper gives an overview of the software re-design required to achieve fully automatic collimator alignments, describing in detail the software architecture and controls systems involved. Following this successful deployment, this software will be used in the future as the default alignment software for the LHC.
*G. Valentino et al., "Semi-automatic beam-based LHC collimator alignment", Physical Review Special Topics-Accelerators and Beams vol. 15, no. 5, 2012.
 
slides icon Slides MOCPL04 [5.933 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL04  
About • paper received ※ 28 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOCPL05 Software Framework QAClient for Measurement/Automation In Proton Therapy Centers 86
 
  • A. Mayor, O. Actis, D. Meer, B. Rohrer
    PSI, Villigen PSI, Switzerland
 
  PSI operates a proton center for cancer treatments consisting of treatment areas Gantry 2, Gantry 3 and OPTIS2. For calibration measurements and quality assurance procedures which have to be executed on a frequent basis and involve different systems and software products, a software framework (QAClient) was developed at PSI. QAClient provides a configurable and extensible framework communicating with PSI control systems, measurement devices, databases and commercial products as LabVIEW and MATLAB. It supports automation of test protocols with user interaction, data analysis and data storage as well as generating of reports. It runs on Java and on different operating system platforms and offers an intuitive graphical user interface. It is used for clinical checks, calibration and tuning measurements, system integration tests and patient table calibrations. New tasks can be configured using standard tasks, without programming effort. QAClient is used for Gantry 2 Daily Check which reduces the execution time by 70% and simplifies measurements so less trained staff can execute it. QA reports are generated automatically and data gets archived and can be used for trend analysis.  
slides icon Slides MOCPL05 [2.453 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL05  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOCPL06 2D-Nano-Ptychography Imaging Results on the SWING Beamline at Synchrotron SOLEIL 91
 
  • C. Engblom, Y.-M. Abiven, F. Alves, F. Berenguer, T. Bizien, A. Gibert, F. Langlois, A. Lestrade, P. Montaville, J. Pérez
    SOLEIL, Gif-sur-Yvette, France
 
  A new Nanoprobe system, which was originally developed in the scope of a collaboration with MAXIV (Sweden), has recently been tested and validated on the SWING beamline in Synchrotron SOLEIL. The aim of the project was to construct a Ptychography nano-imaging station. Initial steps were taken to provide a portable system capable of nanometric scans of samples with sizes ranging from the micrometer to fractions of a millimeter. Imaging was made possible by actuating a total of 16 Degrees Of Freedom (DOF) composed of a sample stage (3 DOF), a central stop stage (5 DOF), a Fresnel zone plate stage (5 DOF), as well as an order sorting aperture stage (3 DOF). These stages were actuated by an ensemble of piezo-driven and high-quality brushless motors, of which synchronized control (with kinematic modelling) was done using the Delta Tau platform. In addition, interferometry feedback was used for reconstruction purposes. Imaging results are promising: the system was able to resolve 40 nm measured with a Siemens star, the paper will describe the system and the achieved results.  
slides icon Slides MOCPL06 [19.056 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL06  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA001 Robotizing SOLEIL Beamlines to Improve Experiments Automation 183
 
  • Y.-M. Abiven, T. Bucaille, L. Chavas, E. Elkaim, P. Gourhant, Y. Liatimi, K. Medjoubi, S. Pierre-Joseph Zéphir, B. Pilliaud, V. Pinty, A. Somogyi, F. Thiam
    SOLEIL, Gif-sur-Yvette, France
  • S. Bouvel
    EFOR, Levallois Perret, France
 
  Beamlines can benefit from the implementation of industrial robots in several ways: minimization of dead time, maximization of experimental throughput, and limitation of human presence during experimentation. Furthermore, the robots add flexibility in task management. The challenge for SOLEIL is to define a robotic standard, on both hardware and software, which is versatile enough to cover beamlines requirements, while being easy to implement, easy to use, and to maintain in operation. This paper will present the process of defining such a standard at SOLEIL, using 6 axis industrial robot arms. It will detail all aspects of this development, from market studies up to technical constraints. The specifications of the robots are aimed at addressing the most common technical constraints of beamlines, with a special care for mechanical properties. The robotic systems will be integrated into the Tango control system using a feature-based approach. This standard implementation is driven by two applications: picking and placing samples for powder diffraction on the CRISTAL beamline and positioning of a detector for x-rays coherent diffraction experiments on the NANOSCOPIUM beamline.  
poster icon Poster MOPHA001 [1.455 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA001  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA010 Automatic Beam Loss Threshold Selection for LHC Collimator Alignment 208
 
  • G. Azzopardi, S. Redaelli, B. Salvachua
    CERN, Meyrin, Switzerland
  • A. Muscat, G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The collimation system used in the Large Hadron Collider at CERN is positioned around the beam with a hierarchy that protects sensitive equipment from unavoidable beam losses. The collimator settings are determined using a beam-based alignment technique, where collimator jaws are moved towards the beam until the beam losses exceed a predefined threshold. This threshold needs to be updated dynamically, corresponding to the changes in the beam losses. The current method for aligning collimators is semi-automated requiring a collimation expert to monitor the loss signals and continuously select and update the threshold accordingly. The human element in this procedure is a major bottleneck for speeding up the alignment. This paper therefore proposes a method to fully automate this threshold selection. A data set was formed from previous alignment campaigns and analyzed to define an algorithm that produced results consistent with the user selections. In over 90% of the cases the difference between the two was negligible and the algorithm presented in this study was used for collimator alignments throughout 2018.  
poster icon Poster MOPHA010 [1.763 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA010  
About • paper received ※ 28 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA012 Interrupting a State Machine 219
 
  • K.V.L. Baker
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  At the ISIS Pulsed Neutron and Muon Source we talk to a variety of types of beamline systems for controlling the environment of samples under investigation. A state machine is an excellent way of controlling a system which has a finite number of states, a predetermined set of transitions, and known events for initiating a transition. But what happens when you want to interrupt that flow? An excellent example of this kind of system could be a field ramp for a magnet, this will start in a "stable" state, the "ramp to target field" event will occur, and it will transition into a state of "ramping". When the field is at the target value, it returns to a "stable" state. Depending on the ramp rate and difference between the current field and the target field this process could take a long time. If you put the wrong field value in, or something else happens external to the state machine, you may want to pause or abort the system whilst it is running. You will want to interrupt the flow through the states. This presentation will detail a solution for such an interruptible system within the EPICS framework.  
poster icon Poster MOPHA012 [0.386 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA012  
About • paper received ※ 27 September 2019       paper accepted ※ 02 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA099 XChem Laboratory Puck Scanner - Algorithm and Result Visualization 448
 
  • U.M. Neuman, J.D. O’Hea
    DLS, Oxfordshire, United Kingdom
  • I.H. Rey
    Tessella, Abingdon, United Kingdom
  • K. Ward
    Mind Foundry Ltd, Oxford, United Kingdom
 
  Macromolecular Crystallography (MX) facilities are known for using many samples and require software tools which can scan, store and help to track samples’ Data Matrix codes and to maintain the correct sample processing order. An open source Data Matrix code scanning program, Puck Scanner, developed at Diamond Light Source (DLS) is introduced, its scanning algorithm explained and the continuous visualisation of results presented. Scanned codes are stored together with date, time, and the number of valid codes within a puck. This information is crucial for researchers as it allows them to match the sample with X-ray scanning results. The software is used in Diamond’s XChem laboratory on a day to day basis and has started to be adopted by other facilities.  
poster icon Poster MOPHA099 [1.636 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA099  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA121 Generic Data Acquisition Interfaces and Processes in Sardana 506
 
  • Z. Reszela, J. Andreu, T.M. Coutinho, G. Cuní, C. Falcon-Torres, D. Fernández-Carreiras, R. Homs-Puron, C. Pascual-Izarra, D. Roldán, M. Rosanes-Siscart
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • G.W. Kowalski
    NSRC SOLARIS, Kraków, Poland
  • A. Milan-Otero
    MAX IV Laboratory, Lund University, Lund, Sweden
  • M.T. Núñez Pardo de Vera
    DESY, Hamburg, Germany
 
  Users visiting scientific installations aim to collect the best quality data frequently under time pressure. They look for complementary techniques at different sites and when they arrive to one they have limited time to understand the data acquisition architecture. In these conditions, the availability of generic and common interfaces to the experimental channels and measurements improve the user experience regarding the programming and configuration of the experiment. Here we present solutions to the data acquisition challenges provided by the Sardana scientific SCADA suite. In one experimental session the same detector may be employed in different modes e.g., getting the data stream when aligning the sample or the stage, getting a single time/monitor controlled exposure and finally running the measurement process like a step or continuous scan. The complexity of the acquisition setup increases with the number of detectors being simultaneously used and even more depending on the applied synchronization. In this work we present recently enriched Sardana interfaces and optimized processes and conclude with the roadmap of further enhancements.  
poster icon Poster MOPHA121 [1.174 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA121  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA137 Timing Synchronization and Controls Integration for ESS Detector Readout 547
 
  • W. Smith
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • S. Alcock, J.M.C. Nilsson
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a new facility being built in Lund, Sweden, which when finished will be the world’s most powerful neutron source. STFC has an in-kind project with the Detector group at ESS to provide timing and control systems integration for the detector data readout system. This paper describes how time is synchronised and distributed to the readout system from the ESS timing system, and how EPICS is used to implement a controls interface exposing the functionality of detector front ends.  
poster icon Poster MOPHA137 [1.180 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA137  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA163 The Detector Control System of the Muon Forward Tracker for the ALICE Experiment at LHC 617
 
  • K. Yamakawa
    Hiroshima University, Faculty of Science, Higashi-Hirosima, Japan
 
  ALICE is the LHC experiment specifically devoted to the study of heavy-ion collisions. The Muon Forward Tracker (MFT) is one of the new detectors developed in the framework of the upgrade programs towards the LHC Run 3 starting from 2021. A Detector Control System (DCS) was developed for the MFT within the new framework of the upgraded ALICE central DCS. In this framework, detectors will deliver physics raw data as well as slow control data. The central DCS will be composed of an interface, named Alice Low level FRont-End Device (ALFRED), to convert high-level words within the DCS to low-level words which are sent to the detector FEE as commands. Used Supervisory Control And Data Acquisition (SCADA) is WinCC Open Architecture (OA). In addition, Joint Control Project Framework is installed to provide standard DCS solutions such as a Finite State Machine (FSM) commonly used by the LHC experiments. The FSM, as a base of the DCS hierarchy, was fully developed and successfully tested. A test bench of the MFT DCS was built as a minimal setup of the full DCS chain consisting of WinCC OA, ALFRED, a demonstration board of a DCS chip and a readout board. The latest status will be presented.  
poster icon Poster MOPHA163 [1.106 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA163  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOSH4001 A Library of Fundamental Building Blocks for Experimental Control Software 653
MOPHA130   use link to see paper's listing under its alternate paper code  
 
  • M. Scarcia, R. Borghes, M. Lonza, M. Manfredda, R. Mincigrucci, E. Pedersoli
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In many experimental facilities there is a rising interest by users and beamline scientists to take part in the experiment control software development process. This necessity arises from the flexibility and adaptability of many beamlines, that can run very different experiments, requiring changes in the software even during beamtimes. On the other side, we still need a professional and controlled approach in order to be able to maintain the software efficiently. Our proposed solution is to exploit the object oriented nature of programming languages to create a library that provides a uniform interface both to the different controlled devices (e.g. motors) and to experimental procedures (e.g. scans). Every component and procedure can be represented as an object, a building block for experiment control scripts. We can thus provide the scientists with a powerful tool for implementing highly flexible control software to run experiments. Furthermore, a library makes the development of experiment control scripts easier and quicker for software developers. In any case we are able to protect the most sensitive structures (e.g. control systems) beneath a strong and trusted software layer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOSH4001  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA038 Extending Tango Control System With Kepler Workflow, Presented on an X-Ray Crystallographic Application 1166
 
  • S. Brockhauser, V. Bugris, K. Csankó, Zs. Filákovics
    BRC, Szeged, Hungary
  • P. Ács, V. Hanyecz
    ELI-ALPS, Szeged, Hungary
  • S. Brockhauser
    EuXFEL, Schenefeld, Germany
 
  Nowadays there is a growing need for user friendly workflow editors in all fields of scientific research. A special interest group is present at big physics research facilities where instrumentation is mostly controlled by a robust, and reliable low level control software solution. Different types of specific experiments using predetermined automated protocols and on-line data processing with real-time feedback require a more flexible and abstract high level control system*. Beside flexibility and dynamism, easy usability is also required for researchers collaborating from several different fields. Tentatively, to test the ease and flexible usability, the Kepler workflow-engine was integrated with Tango**. It enables researchers to automate and document experiment protocols without any programming skill. The X-ray crystallography laboratory at the Biological Research Center of Hungarian Academy of Science (BRC) has implemented an example crystallographic workflow to test the integrated system. This development was performed in cooperation with ELI-ALPS.
*S. Brockhauser, et al., Acta Cryst., D68, pp. 975-984, 2012.
**P. Ács, et al., Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF050, ISBN 978-3-95450-148-9, pp 212-215
 
poster icon Poster WEPHA038 [1.193 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA038  
About • paper received ※ 10 September 2019       paper accepted ※ 03 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA045 Data Acquisition Strategy and Developments at MAX IV 1190
 
  • M. Eguiraun, A. Amjad, P.J. Bell, A. Dupre, D.A. Erb, V.H. Hardion, N.A. Håkansson, A. Milan-Otero, J.F.J. Murari, E. Rosendahl
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The experimental capabilities at the MAX IV synchrotron consists of 17 beamlines at full capacity. Each beamline puts different requirements on the control system in terms of data acquisition, high performance, data volume, pre-processing needs, and fast experiment feedback and online visualization. Therefore, high demands are put on the data management systems, and the reliability and performance of these systems has a big impact on the overall success of the facility. At MAX IV we have started the DataStaMP (Data Storage and Management Project) with the aim of providing a unified and reliable solution for all data sources in our facility. This work presents the control system aspects of the project. It is initially aimed at providing data management solution for a selected number of detectors and beamlines. It is developed in a modular and scalable architecture and combines several programming languages and frameworks. All the software runs in a dedicated cluster and communicates with the experimental stations through high performance networks, using gRPC to talk to the control system and ZMQ for retrieving the data stream.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA045  
About • paper received ※ 17 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA060 Future Acquisition Architecture Investigations at Diamond 1240
 
  • K.A. Ralphs, J.W. Handford
    DLS, Oxfordshire, United Kingdom
 
  At Diamond we are reviewing the current stack of in-house Software Applications that are used to control our beamline experiments and analyse the data produced by them. We intend to use this process of analysis and investigation to formulate proposals for a revised architecture to address the issues with the existing architecture, making use of the opportunities presented by modern technologies and methods, where appropriate. In doing so we hope to design a more flexible and maintainable system which addresses technical debt and functional limitations that have built up over the lifetime of our current software. This will allow us to go on to implement a powerful acquisition and analysis system to be used with the new facilities of Diamond II.  
poster icon Poster WEPHA060 [0.779 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA060  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA069 babyIOC - Control System in a Box Small Factor Solution 1262
 
  • O. Ivashkevych, M.C. Cowan, L.F. Flaks, D. Poshka, T. Smith
    BNL, Upton, New York, USA
 
  Funding: National Synchrotron Light Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886.
In the world of increasing complexity and integration, experiments often stretch over multiple beamlines or several facilities. Users may come with their own sample environments and detectors. It is always a challenge to integrate user end-station equipment into the hosting facility controls. Recognizing this trend, NSLS2 has developed babyIOC* Control System in Box, portable small-factor IOC solution. The new release comes with CentOS, EPICS, as well as areaDetector-3-5**. The selected hardware is from innovative hardware designer UDOO***, Italy. This SBC has diskless 64-bit Intel architecture, 4-core 2.56 GHz, 8 GB of RAM, x3 1 Gbit interfaces for ~$400 US. System boots and runs from microSD card. Building another system comes to copying the image to another microSD card. We believe this board with the easy downloadable image can be used at any facility and/or experimental stations including Tango systems, that would be interested benefiting from areaDetector package. Given a growing interest to areaDetector software from Tango community, babyIOC could serve as evaluation starting point.
*https://oksanagit.github.io/babyIOC
**https://github.com/areaDetector
***https://www.udoo.org/
 
poster icon Poster WEPHA069 [2.527 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA069  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA078 A Virtualized Beamline Control and DAQ Environment at PAL 1273
 
  • S.W. Kim, H.J. Choi, H.S. Kim, W.W. Lee
    PAL, Pohang, Republic of Korea
 
  At least three different computers are used in the beamline of PAL, first for EPICS IOC, second for device control and data acquisition(DAQ), and third for analyzing data for users. In the meantime, stable beamline control was possible by maintaining the policy of separating applications listed above from the hardware layer. As data volumes grow and the resulting data throughput increases, demands for replacement of highly efficient computers has increased. Advances in virtualization technology and robust computer performance have enabled a policy shift from hardware-level isolation to software-level isolation without replacing all the computers. DAQ and analysis software using the Bluesky Data Collection Framework have been implemented on this virtualized OS. In this presentation, we introduce the DAQ system implemented by this virtualization method.  
poster icon Poster WEPHA078 [1.152 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA078  
About • paper received ※ 29 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA091 Generalising the High-Level Geometry System for Reflectometry Instruments at ISIS 1300
 
  • T. Löhnert, A.J. Long
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.R. Holt
    Tessella, Abingdon, United Kingdom
 
  At the ISIS Pulsed Neutron and Muon Source, we in the Experiment Control Group are currently upgrading from the LabVIEW*-based SECI instrument control system to the new IBEX control system** based on EPICS***. One class of instrument we have yet to migrate to the new system is reflectometers. These instruments require equipment to track the path of the neutron beam to high levels of precision over various experimental configurations, which results in a unique set of control system requirements. Since August 2018, we have been implementing a higher level geometry layer responsible for linking beamline components together and preserving experimental parameters such as the incident beam angle across different configurations. This layer is written as a Python server running on the instrument, which interfaces to the Channel Access protocol used by EPICS. This talk will provide an overview of the system architecture, specifically how it supports the design goal of making the system easy to extend and reconfigure while preserving the functionality of the existing solution, as well as an outlook on future plans for a more sophisticated motion control system.
*http://www.ni.com/en-gb/shop/labview.html
**https://iopscience.iop.org/article/10.1088/1742-6596/1021/1/012019/pdf
***https://epics-controls.org/
 
poster icon Poster WEPHA091 [0.550 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA091  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA165 Upgrade of the European XFEL Phase Shifters 1473
 
  • M. Yakopov, S. Abeghyan, M. Bagha-Shanjani, S. Karabekyan, J. Pflüger, F. Preisskorn
    EuXFEL, Schenefeld, Germany
  • G. Chen
    CAEP, Sichuan, People’s Republic of China
 
  To eliminate the impact of radiation shower on the incremental encoder readout and provide a better dynamic movement the upgrade of all 88 phase shifters of the European XFEL have been successfully done without interruption of the operation schedule. The implementation steps, as well as the results of the hardware and software tests made in the laboratory, are presented. The sensitivity of the Renishaw RGH22O15D00A encoder to the radiation shower was measured in the SASE3 undulator system, and the results are presented.  
poster icon Poster WEPHA165 [2.315 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA165  
About • paper received ※ 01 October 2019       paper accepted ※ 18 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBPP01 Building the Control System to Operate the Cryogenic Near Infrared Spectropolarimeter Instrument for the Daniel K. Inouye Solar Telescope 1568
 
  • R.J. Williams, A.J. Borrowman, A. Greer, A. Yoshimura
    OSL, St Ives, Cambridgeshire, United Kingdom
  • A. Fehlmann, B.D. Goodrich, J.R. Hubbard
    DKIST/NSO, Boulder, Colorado, USA
  • I.F. Scholl
    University of Hawaii, Institute for Astronomy, Pukalani, Hawaii, USA
 
  The Cryogenic Near Infrared Spectropolarimeter (Cryo-NIRSP) will be one of the first light instruments on the Daniel K. Inouye Solar Telescope (DKIST) currently under construction in Hawaii. Cyro-NIRSP is a near- and thermal- IR imager and spectrograph operating in a cryogenic environment. It will be used to study the faint solar coronal magnetic field across a large field-of-view. Such a complex and precise instrument demands equal requirements from the control system. The control system must handle the many sub-components (e.g. cameras, polarimeter, mirrors) and bring them all together to manage the setup, timings, synchronization, real time motion and overall monitoring. It is built within the pre-defined DKIST software framework, which provides consistency across all instruments. This paper will discuss how such a control system has been achieved for the Cryo-NIRSP instrument detailing some of the challenges that were overcome relating to the synchronization of specific components and the complex inter-dependencies between configurables. It will also touch on the data processing and visualization software development for the end-to-end functioning of the instrument.  
slides icon Slides THBPP01 [5.471 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THBPP01  
About • paper received ※ 24 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBPP02 DonkiOrchestra: A Software Trigger-Driven Framework for Data Collection and Experiment Management Based on Zeromq Distributed Messaging 1575
 
  • R. Borghes, F. Billè, V. Chenda, G. Kourousias, M. Prica
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Synchrotron end-stations consist of a complex network of devices. The setup is not static and is often upgraded. The data acquisition systems are constantly challenged by such changes and upgrades, so scalability and flexibility are crucial skills. DonkiOrchestra is a ZeroMQ-based framework for data acquisition and experiment control based on an advanced software trigger-driven paradigm. In the DonkiOrchestra approach a software device, referred to as Director, provides the logical organization of the experiment as a sequential workflow relying on triggers. Each software trigger activates a set of Actor devices that can be hierarchically organized according to different priority levels. Data acquired by the Actors is tagged with the trigger number and stored in HDF5 archives. The intrinsic asynchronicity of ZeroMQ maximizes the opportunity of performing parallel operations and sensor readouts. This paper describes the software architecture behind DonkiOrchestra, which is fully configurable and scalable, so it can be reused on multiple endstations and facilities. Furthermore, experimental applications at Elettra beamlines and future developments are presented and discussed.  
slides icon Slides THBPP02 [1.360 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THBPP02  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBPP03 Deep Learning Methods on Neutron Scattering Data 1580
 
  • P. Mutti, F. Cecillon, Y. Le Goc, G. Song
    ILL, Grenoble, France
 
  Recently, by using deep learning methods, computers are able to surpass or come close to matching human performance on image analysis and pattern recognition. This advanced method could also help interpreting data from neutron scattering experiments. Those data contain rich scientific information about structure and dynamics of materials under investigation, and deep learning could help researchers better understand the link between experimental data and materials properties. We applied deep learning techniques to scientific neutron scattering data. This is a complex problem due to the multi-parameter space we have to deal with. We have used a convolutional neural network-based model to evaluate the quality of experimental neutron scattering images, which can be influenced by instrument configuration, sample and sample environment parameters. Sample structure can be deduced during data collection that can be therefore optimized. The neural network model can predict the experimental parameters to properly setup the instrument and derive the best measurement strategy. This results in a higher quality of data obtained in a shorter time, facilitating data analysis and interpretation.  
slides icon Slides THBPP03 [11.877 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THBPP03  
About • paper received ※ 04 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBPP04 Hard X-Ray Pair Distribution Function (PDF) Beamline and End-Station Control System 1584
 
  • O. Ivashkevych, M. Abeykoon, J. Adams, G. Bischof, E.D. Dooryhee, J. Li, R. Petkus, J.T. Trunk, Z. Yin
    BNL, Upton, New York, USA
 
  Funding: National Synchrotron Light Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886.
PDF beamline is a new addition to Diffraction and In Situ Scattering program. Its state-of-the-art end-station gantry system has two detector stages and one sample environment with 3 m travel rated for 200 kg each. Detectors and environment stages move with 300 mm/s. Linear Brushless DC motors are controlled by Geo Brick LV Delta Tau motor-controller. Stages are equipped with absolute encoders and proximity sensors to avoid collisions. Control system slows the stages down when proximity switches are activated and moves 300 mm/s otherwise. A complex controls and safety system with many custom features is required to provide the full functionality of the gantry system and to protect equipment and users. An optics condition module located upstream of the gantry system contain beam defining slits, a fast shutter that is synchronized with detector frame rate, an alignment LASER, and an X-ray Energy Calibration System. The controls system of the OCM supports automatic operation of the ECS followed by unexpected beam dumps to recalibrate the X-ray wavelength. This contribution will discuss the details of the control system design, implementation, challenges, and first user experience.
 
slides icon Slides THBPP04 [9.294 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THBPP04  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBPP05 Implementing Odin as a Control and Data Acquisition Framework for Eiger Detectors 1590
 
  • G.D. Yendell, U.K. Pedersen, M.P. Taylor
    DLS, Oxfordshire, United Kingdom
  • A. Greer
    OSL, St Ives, Cambridgeshire, United Kingdom
  • A.B. Neaves, T.C. Nicholls
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The increasing data throughput of modern detectors is a growing challenge for back-end data acquisition systems. OdinData provides a scalable framework for data acquisition used by multiple beamlines at Diamond Light Source (DLS). While it can be implemented standalone, OdinControl is used to provide a convenient interface to OdinData. Eiger detectors at DLS were initially integrated into the Odin framework specifically for the data acquisition capability, but the addition of detector control provides a more coherent and easily deployable system. OdinControl provides a generic HTTP API as a single point of control for various devices and applications. Adapters can abstract the low-level control of a detector into a consistent API, making it easier for high-level applications to support different types of detector. This paper sets out the design and development of Odin as a control system agnostic interface to integrate Eiger detectors into EPICS beamline control systems at DLS, as well as the current status of operation.  
slides icon Slides THBPP05 [1.724 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THBPP05  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)