Author: Jordan, K.
Paper Title Page
MOPHA164 Wire Scanner for High Intensity Beam Profile Diagnostics 622
  • J. Yan, J. Gubeli, K. Jordan
    JLab, Newport News, Virginia, USA
  • B. Bailey
    University of Tennessee, Knoxville, USA
  A control and data acquisition system of a high speed wire scanner is developed for high intensity beam profile diagnostics. The control system of the wire scanner includes two IOCs, a Soft IOC and a VME IOC. The Soft IOC connects with an Aerotech Ensemble motor drive through EPCIS motor record and controls the movement of the wire scanner. An Electrical Input card samples the real-time position of the wire through an incremental encoder, and generates a pulse to synchronize a VME ADC data acquisition card, which digitizes and samples the beam-induced signal after pre-amplification. A VME Relay Output card is installed to control the Brake Solenoid and Actuator Solenoid. All the VME I/O cards are installed on one VME crate and controlled by the VME IOC. The system configuration and software of the wire scanner are under development.
Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
poster icon Poster MOPHA164 [0.973 MB]  
DOI • reference for this paper ※  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPHA002 LCLS-II Cryomodule and Cryogenic Distribution Control 1071
  • D.T. Robinson, A.L. Benwell, C. Bianchini, D. Fairley, S.L. Hoobler, K.J. Mattison, J. Nelson, A. Ratti
    SLAC, Menlo Park, California, USA
  • L.E. Farrish, J. Gubeli, C. Hovater, K. Jordan, W. Moore
    JLab, Newport News, Virginia, USA
  • J.A. Kaluzny, A. Martinez
    Fermilab, Batavia, Illinois, USA
  The new superconducting Linear Coherent Light Source (LCLS-II) at the SLAC National Accelerator Laboratory will be an upgrade to LCLS, the world’s first hard X-ray free-electron laser. LCLS-II is in an advanced stage of construction with equipment for both Cryoplants as well as more than half of the 37 cryomodules onsite. Jefferson Lab (JLab) is a partner lab responsible for building half of the LCLS-II cryomodules. Hence the Low Energy Recirculation Facility (LERF) at JLab was used to stage and test LCLS-II cryomodules before shipping them to SLAC. LERF was set up to test two cryomodules at a time. LERF used LCLS-II cryogenic controls instrumentation racks, Programmable Logic Controllers (PLC) controls and Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs) with the intention to use the LERF setup to check-out and verify cryogenic controls for LCLS-II. The cryogenic controls first utilized at LERF would then be replicated for controlling all 37 cryomodules via an EPICS user interface. This paper discusses the cryogenic controls currently developed for implementation in the LCLS-II project.  
poster icon Poster WEPHA002 [1.119 MB]  
DOI • reference for this paper ※  
About • paper received ※ 28 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)